⛸️ Sebuah Batang Homogen Bermassa 3 Kg
Sebuahbatang homogen 3 poin bermassa 3 kg dengan panjang 2m diputar pada pusat massa. Jika sumbu putar digeser 40cm dari pusat massa batang. momen inersianya sebesar . O 1,24k9m2 1,48k9m2 ) 2,64k9m2 3,32k9m2 O 4,48k9m2
I= I batang + I lumpur ⇒ I = 1 ⁄ 12 m. l 2 + mR 2 ⇒ I = 1 ⁄ 12 (0,6).(0,6) 2 + 0,02 (0,3) 2 ⇒ I = 0,018 + 0,0018 ⇒ I = 0,0198 ⇒ I = 1,98 x 10-2 kg m 2
Contoh3. Sebuah batang homogen AC dengan panjang panjang 4 m dan massanya 50 kg. Pada ujung C digantungkan beban yang massanya 20 kg. Sebuah balok bermassa 5 kg diletakkan diatas papan kayu yang bermassa 10 kg. Papan tersebut bertumpu pada kaki A dan C. Jika jarak beban dari kaki A 1 m dan panjang papan kayu 5 m, maka hitunglah gaya yang
Sebuahbatang homogen bermassa 3 kg dan panjang 40 cm memiliki sumbu rotasi diujungnya. Maka besar percepatan saat batang berotasi dan dikenai gaya sebesar 8 N adalah . (gaya yang diberikan membentuk arah 300 terhadap garis penghubung dari sumbu ke titik kerja gaya)
Contoh3 : Sebuah batang homogen bermassa 3 kg dan panjang 40 cm, diberi beban 2 kg pada salah satu ujungnya dan ujung lainnya sebagai tumpu. Jika F sebesar 280 N mengarah ke atas bekerja pada jarak 5 cm dari titik tumpu, maka hitunglah momen gayanya.
5 Sebuah batang homogen bermassa 3 kg diputar di pusat massa sehingga memiliki momen inersia sebesar 0,36k kgm2 Jika sumbu putar digeser 40cm dari pusat massa batang, besar momen inersianya menjadi . a. 0,42kgm2 d. 1,12kgm2 b. 0,64kgm2 e. 1,46kgm2 C. 0,84kgm2
I= 2 ⁄ 5 m.r 2. ⇒ I = 2 ⁄ 5 (0,5). (0,1) 2. ⇒ I = 2 x 10 -3 kg.m 2. Momentum sudut bola : L = I.ω. ⇒ L = 2 x 10 -3 (200) ⇒ L = 0,4 kg.m 2 /s. Sebuah batang homogen bermassa 2 kg dan panjang 1 m diputar dengan kecepatan sudut 24 rad/s. Jika poros berada di pusat batang, maka hitunglah momentum sudut batang.
Sebuahbatang homagen bermassa 3kg dan panjang 40 cm, diberi beban 2 kg pada salah satu ujungnya dan ujung lainya sebagai tumpu. jika f sebesar 280 N - 16570009 mb = 3 kg Lb = 20 cm = 0,2 meter L = 40 cm = 0,4 m m = 2 kg F = 280 N L gaya = 5 cm = 0,05 meter Jenis batang = Homogen * Ditanya τ = __? * Jawab Penjelasan tertera pada lampiran
4. ½. τ C = 80 cm.N = 0,8 m.N (arah: searah jaum jam) resultan torsi / momen gaya. Στ = 4 + 0 + 0,8 = 4,8 m.N (searah jarum jam) 4. Perhatikan gambar. Jika massa batang 2 kg. hitung momen gaya pada batang jika sistem diputar dengan poros di ujung kiri batang (F1) a. 7 mN.
. Kelas 11 SMAKeseimbangan dan Dinamika RotasiMomen InersiaSebuah batang homogen panjangnya 80 cm dan massanya 3 kg diputar dengan sumbu yang terletak pada jarak 20 cm dari salah satu ujungnya. Besar momen inersia batang itu adalah...Momen InersiaKeseimbangan dan Dinamika RotasiStatikaFisikaRekomendasi video solusi lainnya0223Dua bola masing-masing massa m1=4 kg dan m2=3 kg dihubung...0126Tongkat penyambung tidak bermassa dengan panjang 4 m meng...0231Katrol ditarik sehingga katrol bergerak dengan percepatan...0235Sebuah keping cakram disk memiliki momen inersia l berput...Teks videoKalau peran pada soal ini adalah batang yang homogen dan panjangnya itu adalah l = 80 cm atau 0,8 meter kemudian di sini ada titik P adalah titik berat dari batangnya karena di homogen berarti titik p yang berada di tengah-tengah kemudian disini batangnya ini akan diputar ya dengan sumbu putarnya berada di titik tertentu ini berada di titik yang sedemikian rupa sehingga jarak dari sini ke ujung yang lain ya ke ujung tertentu Kita misalkan ini di tol di tol di ketahui yaitu 20 cm dari tiang dari sumbu putarnya ini ke ujung yang di sini ini adalah 20 cm ya seperti itu Nah kita akan mencari besarnya momen inersia dari batang ini. Kalau batang ini diputar dengan sumbu putar melalui titik Q kemudian disini kita definisikan d adalah panjang yang diukur dari i kepek. Oke bisa diketahui bahwa tadi kan Pak 0,8 m ya gan karena titik p berada di tengah-tengah berarti kan dari ujung sini ke P adalah setengah dari 0,8 m yaitu 0,4 meter dari sini ke sini 0,2 m hingga dari sini ke sini ya yang merupakan banyaknya Berartikan D = dari sini ke sini yaitu 0,4 M atau 40 cm dikurangi dengan dari sini ke sini di tahun ke tahun adalah 20 cm jadi 40 dikurangi 20 hasilnya 20 cm atau 0,2 meter jadi kita dapatkan adalah 0,2 m dan diketahui massa dari batangnya itu adalah M = 3 kg. Oke disini kita namakan besarnya momen inersia dari batang ini jika diputar dengan sumbu putarnya melalui titik Q itu adalah jadi kita akan mencari nilai dari isi ini perhatikan bahwa jika batang ini diputar dengan sumbu putarnya ini berada di titik sembarang ya dalam hal ini berada di titik Q Nanti momen inersia dari batang tersebut yaitu momen inersia nya jika sumbu putarnya di titik Q itu dirumuskan dengan ini yaitu isi sama dengan IP ditambah m d kuadrat dengan adalah momen inersia dari batangnya. Jika sumbu putarnya ini melalui titik P melalui titik beratnya 1 Batang Jika ia diputar dengan sumbu putarnya yang melalui titik beratnya ya makan nanti momen inersia adalah dan dirumuskan dengan ini yaitu p = mr kuadrat dibagi dengan 12. Jadi ini bisa dilihat dari tabel momen inersia yang itu untuk datang kalau sumbu putarnya berada melalui titik pusat massanya ya atau titik beratnya ini rusak seperti ini kemudian ditambah dengan MD kuadrat seperti itu kemudian kita masukkan baru tadi m-nya 3 dan 0,8 yang dibagi 12 kemudian jangan lupa ini dikuadratkan ditambah m yang massanya 3 dan D rajin adalah 0,2 dan setelah itu mendapatkan hasilnya itu adalah 0,2 Jadi ternyata momen inersia dari batang ini jika ia diputar dengan sumbu putarnya melalui titik Q kita adalah iki yaitu = 0,28 kg m kuadrat jawabannya itu adalah yang di sampai jumpa di pertanyaan nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Mahasiswa/Alumni Universitas Negeri Malang03 Februari 2022 0758Hallo, Mila. Kakak bantu jawab ya . Jawaban yang benar adalah 1,48 kgm². Diketahui M = 3 kg L = 2 m d = 40 cm = 0,4 m Ditanya I = ... ? Jawab Momen inersia adalah ukuran kelembaman suatu benda untuk berotasi terhadap porosnya. Momen inersia sebuah batang homogen dapat dicari menggunakan persamaan berikut I = 1/12 ML² + Md² dengan I = momen inersia kgm² M = massa kg L = panjang batang m d = sumbu putar m Sehingga, I = 1/ + I = 1/12.3.2² + 3.0,4² I = 1/12.12 + 0,48 I = 1 + 0,48 I = 1,48 kgm² Jadi, momen inersianya adalah 1,48 kgm². Semoga membantu ya .
FisikaStatika Kelas 11 SMAKeseimbangan dan Dinamika RotasiHukum Kekekalan Momentum Sudut pada Gerak RotasiSebuah batang tipis homogen dengan massa M dan panjang L terletak di atas meja licin horizontal Secara mendadak batang dikenai gaya impulsif dengan impuls epsilon pada salah satu ujungnya dalam arah tegak lurus batang. Tentukan a. jarak yang ditempuh batang setelah melakukan satu putaran penuh, b. energi kinetik translasi, rotasi, dan energi total akibat bekerjanya impuls Kekekalan Momentum Sudut pada Gerak RotasiKeseimbangan dan Dinamika RotasiStatikaFisikaRekomendasi video solusi lainnya0412Seorang anak laki-laki bermassa m = 50 kg berdiri di pusa...Seorang anak laki-laki bermassa m = 50 kg berdiri di pusa...0229Sebuah katrol silinder dengan jari-jari R dan momen iners...Sebuah katrol silinder dengan jari-jari R dan momen iners...0140Seorang penari balet dengan tangan terentang mempunyai mo...Seorang penari balet dengan tangan terentang mempunyai mo...0441Dua benda bermassa 2 kg dan 3 kg diikat tali kemudian...Dua benda bermassa 2 kg dan 3 kg diikat tali kemudian...
sebuah batang homogen bermassa 3 kg